Name

Date

Period

Worksheet 11.2—Taylor Polynomials

Show all work. No calculator except unless specifically stated.

Short Answer/Free Response

On problems 1-5, find a Maclaurin polynomial of degree n for each of the following.

1.
$$f(x) = e^{-x}$$
, $n = 3$

2.
$$f(x) = e^{2x}$$
, $n = 4$

3.
$$f(x) = \cos x$$
, $n = 8$

4.
$$f(x) = xe^{2x}$$
, $n = 4$

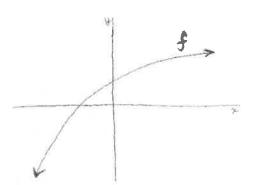
5.
$$f(x) = \frac{1}{x+1}$$
, $n = 5$

On problems 6-8, find a Taylor polynomial of degree n centered at x = c for each of the following.

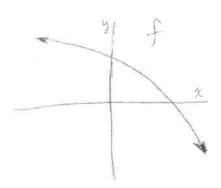
- 6. $f(x) = \frac{1}{x}$, n = 5, c = 1
- 7. $f(x) = \ln x$, n = 5, c = 1 8. $f(x) = \sin x$, n = 6, $c = \frac{\pi}{4}$

9. (Calculator Permitted) Use your answer from problem 1 to approximate $f\left(\frac{1}{2}\right)$ to four decimal places.

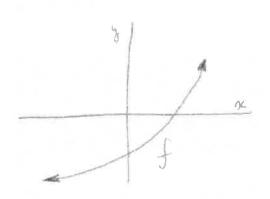
10. (Calculator Permitted) Use your answer from problem 7 to approximate f(1.2) to four decimal places.

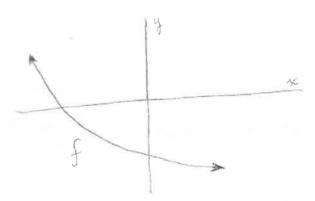

- 11. Suppose that function f(x) is approximated near x = 0 by a sixth-degree Taylor polynomial $P_6(x) = 3x 4x^3 + 5x^6$. Give the value of each of the following:
 - (a) f(0)
- (b) f'(0)
- (c) f'''(0)
- (d) $f^{(5)}(0)$
- (e) $f^{(6)}(0)$

- 12. (Calculator Permitted) Suppose that g is a function which has continuous derivatives, and that g(5) = 3, g'(5) = -2, g''(5) = 1, g'''(5) = -3
 - (a) What is the Taylor polynomial of degree 2 for g near 5? What is the Taylor polynomial of degree 3 near 5?


(b) Use the two polynomials that you found in part (a) to approximate g(4.9).

For problems 13-16, suppose that $P_2(x) = a + bx + cx^2$ is the second degree Taylor polynomial for the function f about x = 0. What can you say about the signs of a, b, and c, if f has the graphs given below?


13.


14.

15.

16.

17. Show how you can use the Taylor approximation $\sin x \approx x - \frac{x^3}{3!}$ for x near 0 to find $\lim_{x\to 0} \frac{\sin x}{x}$.

18. Use the fourth-degree Taylor approximation of $\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ for x near 0 to find $\lim_{x \to 0} \frac{1 - \cos x}{x}$.

19. Estimate the integral $\int_0^1 \frac{\sin t}{t} dt$ using a Taylor polynomial for $\sin t$ about t = 0 of degree 5.

Multiple Choice

20. If f(0) = 0, f'(0) = 1, f''(0) = 0, and f'''(0) = 2, then which of the following is the third-order Taylor polynomial generated by f(x) at x = 0?

(A)
$$2x^3 + x$$
 (B) $\frac{1}{3}x^3 + \frac{1}{2}x$ (C) $\frac{2}{3}x^3 + x$ (D) $2x^3 - x$ (E) $\frac{1}{3}x^3 + x$

- 21. Which of the following is the coefficient of x^4 in the Maclaurin polynomial generated by $\cos(3x)$?
 - (A) $\frac{27}{8}$ (B) 9 (C) $\frac{1}{24}$ (D) 0 (E) $-\frac{27}{8}$

22. Which of the following is the Taylor polynomial generated by $f(x) = \cos x$ at $x = \frac{\pi}{2}$?

(A)
$$\left(x - \frac{\pi}{2}\right) - \frac{\left(x - \frac{\pi}{2}\right)^3}{3!} + \frac{\left(x - \frac{\pi}{2}\right)^4}{4!}$$
 (B) $1 + \frac{\left(x - \frac{\pi}{2}\right)^2}{2!} + \frac{\left(x - \frac{\pi}{2}\right)^4}{4!}$ (C) $1 - \frac{\left(x - \frac{\pi}{2}\right)^2}{2!} + \frac{\left(x - \frac{\pi}{2}\right)^4}{4!}$ (D) $1 - \left(x - \frac{\pi}{2}\right)^2 + \left(x - \frac{\pi}{2}\right)^4$ (E) $-\left(x - \frac{\pi}{2}\right) + \frac{\left(x - \frac{\pi}{2}\right)^3}{6}$

23. (Calculator Permitted) Which of the following gives the Maclaurin polynomial of order 5 approximation to sin(1.5)?

(A) 0.965

(B) 0.985 (C) 0.997

(D) 1.001

(E) 1.005

- 24. Which of the following is the quadratic approximation for $f(x) = e^{-x}$ at x = 0?
- (A) $1-x+\frac{1}{2}x^2$ (B) $1-x-\frac{1}{2}x^2$ (C) $1+x+\frac{1}{2}x^2$ (D) 1+x (E) 1-x